The millimeter-wave (mmWave) antenna array plays an important role in the excellent performance of wireless sensors networks (WSN) or unmanned aerial vehicle (UAV) clusters. However, the array elements are easily damaged in its harsh working environment but hard to be repaired or exchanged timely, resulting in a serious decline in the beamforming performance. Thus, accurate self-diagnosis of the failed elements is of great importance. In previous studies, there are still significant difficulties for large-scale arrays under extremely low SNR. In this paper, a diagnosis algorithm with low complexity and high reliability for the failed elements is proposed, which is based on a joint decision of communication signal and sensing echoes. Compared with the previous studies, the complexity of the algorithm is reduced by the construction of low-dimensional feature vectors for classification, the decoupling of the degree of arrival (DOA) estimation and the failed pattern diagnosis, with the help of the sub-array division. Simulation results show that, under an ultra-low SNR of −12.5 dB for communication signals and −16 dB for sensing echoes, an accurate self-diagnosis with a block error rate lower than 8% can be realized. The study in this paper will effectively promote the long-term and reliable operation of the mmWave antenna array in WSN, UAV clusters and other similar fields.