The threshold current density of narrow (1.5 µm) ridgewaveguide InGaN multi-quantum-well laser diodes, as well as the shape of their lateral far-field patterns, strongly depend on the etch depth of the ridge waveguide. Both effects can be attributed to strong index-antiguiding. A value of the antiguiding factor R = 10 is experimentally determined near threshold by measurements of the current-dependent gain and refractive index spectra. The device performances are simulated self-consistently solving the Schrödinger-Poisson equations and the equations for charge transport and waveguiding. Assuming a carrier-induced index change which matches the experimentally determined antiguiding factor, both the measured high threshold current and the shape of the far-field pattern of lasers with shallow ridges can be reproduced theoretically.