We study higher order expansions both in the Berry-Esséen estimate (Edgeworth expansions) and in the local limit theorems for Birkhoff sums of chaotic probability preserving dynamical systems. We establish general results under technical assumptions, discuss the verification of these assumptions and illustrate our results by different examples (subshifts of finite type, Young towers, Sinai billiards, random matrix products), including situations of unbounded observables with integrability order arbitrarily close to the optimal moment condition required in the i.i.d. setting.
Contents