Semiconductor microcavity systems strongly coupled to quantum wells are now receiving a great deal of attention because of their ability to efficiently generate coherent light by the Bose-Einstein condensation (BEC) of an exciton-polariton gas. Since the exciton polaritons are composite quasibosonic particles, many fundamental features arise from their original constituents, i.e., electrons, holes and photons. As a result, not only equilibrium phases typified by the BEC but also nonequilibrium lasing phases can be achieved. In this contribution, we describe a framework which can treat such equilibrium and nonequilibrium phases in a unified way.