Abstract. For a unit-norm frame F = { f i } k i=1 in R n , a scaling is a vector c = (c(1),... ,c(kis a Parseval frame in R n . If such a scaling exists, F is said to be scalable. A scaling c is a minimal scaling if { f i : c(i) > 0} has no proper scalable subframe. In this paper, we provide an algorithm to find all possible contact points for the John's decomposition of the identity by applying the b-rule algorithm to a linear system which is associated with a scalable frame. We also give an estimate of the number of minimal scalings of a scalable frame. We provide a characterization of when minimal scalings are affinely dependent. Using this characterization, we can conclude that all strict scalings c = (c(1),... ,c(k)) ∈ R k >0 of F have the same structural property. That is, the collections of all tight subframes of strictly scaled frames are the same up to a permutation of the frame elements. We also present the uniqueness of orthogonal partitioning property of any set of minimal scalings, which provides all possible tight subframes of a given scaled frame. Mathematics subject classification (2010): Primary 42C15, 05B20, 15A03.