Conclusions:In an analysis of immune cells from patients with chronic HBV infection, we found the duration of HBsAg exposure, rather than the absolute quantity of HBsAg, alters the profile of HBV-specific T cell responses. Although the presence of HBsspecific T cells might not be essential for the clearance of HBV infection in all patients, our study indicates that therapeutic intervention designed to restore anti-HBV immunity should consider patients younger than 30 y.
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame can be regarded as a frame-like collection of subspaces in a Hilbert
A fusion frame is a collection of subspaces in a Hilbert space, generalizing the idea of a frame for signal representation. A tool to construct fusion frames is the spectral tetris algorithm, a flexible and elementary method to construct unit norm frames with a given frame operator having all of its eigenvalues greater than or equal to two. We discuss how spectral tetris can be used to construct fusion frames with prescribed eigenvalues for its fusion frame operator and with prescribed dimensions for its subspaces.
Frames have established themselves as a means to derive redundant, yet stable decompositions of a signal for analysis or transmission, while also promoting sparse expansions. However, when the signal dimension is large, the computation of the frame measurements of a signal typically requires a large number of additions and multiplications, and this makes a frame decomposition intractable in applications with limited computing budget. To address this problem, in this paper, we focus on frames in finite-dimensional Hilbert spaces and introduce sparsity for such frames as a new paradigm. In our terminology, a sparse frame is a frame whose elements have a sparse representation in an orthonormal basis, thereby enabling low-complexity frame decompositions. To introduce a precise meaning of optimality, we take the sum of the numbers of vectors needed of this orthonormal basis when expanding each frame vector as sparsity measure. We then analyze the recently introduced algorithm Spectral Tetris for construction of unit norm tight frames and prove that the tight frames generated by this algorithm are in fact optimally sparse with respect to the standard unit vector basis. Finally, we show that even the generalization of Spectral Tetris for the construction of unit norm frames associated with a given frame operator produces optimally sparse frames. *
The subject of this article is the duality principle, which, well beyond its stand at the heart of Gabor analysis, is a universal principle in frame theory that gives insight into many phenomena. Its fiber matrix formulation for Gabor systems is the driving principle behind seemingly different results. We show how the classical duality identities, operator representations and constructions for dual Gabor frames are in fact aspects of the dual Gramian matrix fiberization and its sole duality principle, giving a unified view to all of them. We show that the same duality principle, via dual Gramian matrix analysis, holds for dual (or bi-) systems in abstract Hilbert spaces. The essence of the duality principle is the unitary equivalence of the frame operator and the Gramian of certain adjoint systems. An immediate consequence is, for example, that, even on this level of generality, dual frames are characterized in terms of biorthogonality relations of adjoint systems. We formulate the duality principle for irregular Gabor systems which have no structure whatsoever to the sampling of the shifts and modulations of the generating window. In case the shifts and modulations are sampled from lattices we show how the abstract matrices can be reduced to the simple structured fiber matrices of shift-invariant systems, thus arriving back in the well understood territory. Moreover, in the arena of multiresolution analysis J Fourier Anal Appl (MRA)-wavelet frames, the mixed unitary extension principle can be viewed as the duality principle in a sequence space. This perspective leads to a construction scheme for dual wavelet frames which is strikingly simple in the sense that it only needs the completion of an invertible constant matrix. Under minimal conditions on the MRA, our construction guarantees the existence and easy constructability of non-separable multivariate dual MRA-wavelet frames. The wavelets have compact support and we show examples for multivariate interpolatory refinable functions. Finally, we generalize the duality principle to the case of transforms that are no longer defined by discrete systems, but may have discrete adjoint systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.