Type A trichothecenes are common mycotoxins in stored cereal grains, where co-contamination is likely to occur. Seeking new microbiological options capable of inactivating more than one type A trichothecene, this study aimed to analyze facultative anaerobe bacteria isolated from broiler proventriculus. For this purpose, type A trichothecenes were produced in vitro, and a facultative anaerobic bacterial consortium was obtained from a broiler’s proventriculus. Then, the most representative bacterial strains were purified, and trichothecene inactivating assays were performed. Finally, the isolate with the greatest capacity to remove all tested mycotoxins was selected for biosorption assays. The results showed that when the consortium was tested, neosolaniol (NEO) was the most degraded mycotoxin (64.55%; p = 0.008), followed by HT-2 toxin (HT-2) (22.96%; p = 0.008), and T-2 toxin (T-2) (20.84%; p = 0.014). All isolates were bacillus-shaped and Gram-positive, belonging to the Bacillus and Lactobacillus genera, of which B. cereus was found to remove T-2 (28.35%), HT-2 (32.84%), and NEO (27.14%), where biosorption accounted for 86.10% in T-2, 35.59% in HT-2, and 68.64% in NEO. This study is the first to prove the capacity of B. cereus as an effective inactivator and binder of multi-type A trichothecenes.