Traumatic
brain injury is a leading cause of mortality worldwide,
often affecting individuals at their most economically active yet
no primary disease-modifying interventions exist for their treatment.
Real-time direct spectroscopic examination of the brain tissue within
the context of traumatic brain injury has the potential to improve
the understanding of injury heterogeneity and subtypes, better target
management strategies and organ penetrance of pharmacological agents,
identify novel targets for intervention, and allow a clearer understanding
of fundamental biochemistry evolution. Here, a novel device is designed
and engineered, delivering Raman spectroscopy-based measurements from
the brain through clinically established cranial access techniques.
Device prototyping is undertaken within the constraints imposed by
the acquisition and site dimensions (standard intracranial access
holes, probe’s dimensions), and an artificial skull anatomical
model with cortical impact is developed. The device shows a good agreement
with the data acquired
via
a standard commercial
Raman, and the spectra measured are comparable in terms of quality
and detectable bands to the established traumatic brain injury model.
The developed proof-of-concept device demonstrates the feasibility
for real-time optical brain spectroscopic interface while removing
the noise of extracranial tissue and with further optimization and
in vivo
validation, such technology will be directly translatable
for integration into currently available standards of neurological
care.