Simple SummaryThe spermatozoon is a highly differentiated cell, whose morphology has been affected throughout evolution by selective forces such as the competition between the sperm of rival males (sperm competition) and the joint evolution of male and female reproductive tracts (coevolution). The study of its morphology is important when analyzing the relationships between different species. In this contribution we analyzed new specimens and produced a database with all the spermatozoa dimensions recorded to date, comprising 75 individuals from 20 species and 8 genera, representing 2 families of neotropical primates (Cebidae and Atelidae). After an evolutionary analysis, we observed two different trends for the Cebidae and Atelidae families. Narrower and shorter spermatozoa seem to be the ancestral (oldest) form for Cebidae, with an evolutionary trend toward spermatozoa with wider and larger heads in the derived (younger) species. In Atelidae, on the contrary, narrower heads are observed in the more derived groups. We analyzed these results in the context of sperm competition and mating systems in these groups. More studies are needed to improve our knowledge of the evolution of the spermatozoa in neotropical primates.AbstractThe morphological and morphometric characterization of spermatozoa has been used as a taxonomic and phylogenetic tool for different species of mammals. We evaluated and compared the sperm morphometry of five neotropical primate species: Alouatta caraya, Ateles belzebuth and Ateles chamek of family Atelidae; and Cebus cay (=Sapajus cay) and Cebus nigritus (=Sapajus nigritus) of family Cebidae. After the collection of semen samples, the following parameters were measured on 100 spermatozoa from each specimen: Head Length, Head Width, Acrosome Length, Midpiece Length, Midpiece Width and Tail Length. Considering the available literature on sperm morphometry, we gathered data of 75 individuals, from 20 species, 8 genera and 2 families. These data were superimposed on a phylogeny to infer the possible direction of evolutionary changes. Narrower and shorter spermatozoa seem to be the ancestral form for Cebidae, with a trend toward wider and larger heads in derived groups. The spermatozoa of Atelidae may show an increase in total length and midpiece length. Sperm heads would have become narrower in the more derived groups of Ateles. Sperm length may increase in the more derived species in both families. Our results are discussed in the context of sperm competition and sexual selection.