synopsisTimedependent, apparent heat capacities of glucose, poly(viny1 chloride), polystyrene, selenium, poly(methy1 methacrylate), and poly(2,6-diiethyl-1,4-phenylene ether) in the glass transition region were determined by differential thermal analysis. The thermal history was set by linear cooling a t rates between 0.007 and 16OoC/min. Linear heating for analysis was carried out at rates between 0.3 and 6OO0C/min. Average activation energies of 52,81,90,54,77, and 108 kcal/mole, respectively, were evaluated by using the hole theory of glasses previously developed. Within experimental limitations all data could be described quantitatively by the theoretical expressions using only one parameter, the number of frozen-in holes, to describe the thermal history. Experimental and theoretical limitations are discussed.