A Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS)/carbon conductive paste was prepared and coated on a conducting FTO glass to construct counter electrode for polymer heterojunction dye-sensitized solar cells (DSSCs). The surface morphology, conductivity, sheet resistance, redox properties and photoelectric properties of carbon electrode were observed respectively by scanning electron microscopy, four-probe tester and CHI660D electrochemical measurement system. The experimental results showed that DSSCs had the best photoelectric properties for PEDOT:PSS/carbon counter electrode annealing at 80°C in vacuum conditions. Using [6, 6]-phenyl-C 61 -butyric acid methyl ester (PCBM)/poly (3-hexylthiophene) (P3HT) heterojunction to replace I -3 =I -redox electrolyte, the overall energy conversion efficiency of the DSSCs with barrier layer reached 4.11% under irradiation of a simulated solar light with a intensity of 100 mW$cm -1 (AM 1.5), which is higher 20% than that of the DSSCs with Pt counter electrode (3.42%). The excellent photoelectric properties, simple preparation procedure and low cost allow the PEDOT:PSS/carbon electrode to be a credible alternative used in DSSCs.