A composite film of nickel sulfide/platinum/titanium foil (NiS/Pt/Ti) with low cost and high electrocatalytic activity was synthesized by the use of an in situ electropolymerization route and proposed as a counter electrode (CE) catalyst for flexible dye-sensitized solar cells (FDSSCs). The FDSSC with the NiS/Pt/Ti CE exhibited a comparable power conversion efficiency of 7.20% to the FDSSC with the platinum/titanium (Pt/Ti) CE showing 6.07%. The surface morphology of the NiS/Pt/Ti CE with one-dimensional (1D) structure is characterized by using the scanning electron microscopy (SEM). The NiS/Pt/Ti CE also displayed multiple electrochemical functions of excellent conductivity, great electrocatalytic ability for iodine/triiodine, and low charge transfer resistance of 2.61 ± 0.02 Ω cm2, which were characterized by using the cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization plots. The photocurrent-photovoltage (J-V) character curves were further used to calculate the theoretical optical light performance parameters of the FDSSCs. It may be said that the NiS/Pt/Ti counter electrode is a promising catalytic material to replace the expensive platinum in FDSSCs.
A high porous molybdenum sulfide-carbon (MoS 2 -C) hybrid film was prepared by using an in situ hydrothermal route. The MoS 2 -C hybrid film served as a low-cost and high efficient platinum-free counter electrode for a dye-sensitized solar cell (DSSC). The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel curve analysis indicate that the MoS 2 -C electrode possesses low charge transfer resistance on the electrolyte-electrode interface, high electrocatalytic activity and fast reaction kinetics for the reduction of triiodide to iodide at the counter electrode, which is due to large specific surface area and special structure and compositions of MoS 2 -C film. A DSSC with the novel MoS 2 -C counter electrode achieve a high power conversion efficiency of 7.69% under standard light illumination, which exceeds that of the DSSC with a Pt counter electrode (6.74%).
Light-weight PEDOT-Pt/Ti mesh and Ti/TiO(2) foil electrodes are prepared. Owing to the PEDOT-Pt/Ti photocathode's high transparency, good electrocatalytic activity, and low resistance; the Ti/TiO(2) anode's large specific area and high conductivity, a light-weight backside illuminated large-area (100 cm(2) ) dye-sensitized solar cell achieves an energy conversion efficiency of 6.69% under an outdoors sunlight irradiation of 55 mW cm(-2) .
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ~24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.