a b s t r a c tThe aim of the present paper is to study the thermoelastic interactions in an unbounded elastic medium with a spherical cavity in the context of four different theories of thermoelasticity, namely: the classical coupled dynamical thermoelasticity, the extended thermoelasticity, the temperature-rate-dependent thermoelasticity and the thermoelasticity without energy dissipation in a unified way. The cavity surface is assumed to be stress free and is subjected to a smooth and time-dependent-heating effect. The solutions for displacement, temperature and stresses are obtained with the help of the Laplace transform procedure. Firstly the short-time approximated solutions for four different theories have been obtained analytically. Then following the numerical method proposed by Bellman et al. [R. Bellmen, R.E. Kolaba, J.A. Lockette, Numerical Inversion of the Laplace Transform, American Elsevier Pub. Co., New York, 1966] for the inversion of Laplace transforms, the numerical values of the physical quantities are also computed for the copper material and results are displayed in graphical forms to compare the results obtained for the theory of thermoelasticity without energy dissipation with the results of other thermoelasticity theories.