ABSTRACT. The propagation ofmagneto-thermoelastic disturbances produced by a thermal shock in a finitely conducting elastic half-space in contact with vacuum is investigated. The boundary of the half-space is subjected to a normal load. Lord-Shulman theory of thermoelasticity [1] is used to account for the interaction between the elastic and thermal fields. Laplace transform on time is .used to obtain the short-time approximations of the solutions because of the short duration of 'second sound' effects. It is found that in the half-space the displacement is continuous at the modified dilational and thermal wavefronts, whereas the perturbed magnetic field, stress and the temperature suffer discontinuities at these locations. The perturbed magnetic field, is, however, discontinuous at the Alf'ven-acoustic wavefront in vacuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.