Spintronics holds the promise for future information technologies. Devices based on manipulation of spin are most likely to replace the current silicon complementary metal‐oxide semiconductor devices that are based on manipulation of charge. The challenge is to identify or design materials that can be used to generate, detect, and manipulate spin. Since the successful isolation of graphene and other two‐dimensional (2D) materials, there has been a strong focus on spintronics based on 2D materials due to their attractive properties, and much progress has been made, both theoretically and experimentally. Here, we summarize recent developments in spintronics based on 2D materials. We focus mainly on materials of truly 2D nature, that is, atomic crystal layers such as graphene, phosphorene, monolayer transition metal dichalcogenides, and others, but also highlight current research foci in heterostructures or interfaces. In particular, we emphasize roles played by computation based on first‐principles methods which has contributed significantly in the designs of spintronic materials and devices. We also highlight challenges and suggest possible directions for further studies. WIREs Comput Mol Sci 2017, 7:e1313. doi: 10.1002/wcms.1313
This article is categorized under:
Structure and Mechanism > Computational Materials Science
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Electronic Structure Theory > Density Functional Theory