Based on spin-charge coupled drift-diffusion equations, which are derived from kinetic equations for the spin-density matrix in a rigorous manner, the electric-field-induced nonequilibrium spin polarization is treated for a two-dimensional electron gas with both Rashba and Dresselhaus spinorbit coupling. Most emphasis is put on the consideration of the field-mediated spin dynamics for a model with equal Rashba and Dresselhaus coupling constants, in which the spin relaxation is strongly suppressed. Weakly damped electric-field-induced spin excitations are identified, which remind of space-charge waves in crystals.