Within the framework of Nikiforov-Uvarov method, we obtained an approximate solution of the Schrodinger equation for the Energy Dependent Generalized inverse quadratic Yukawa potential model. The bound state energy eigenvalues for were computed for various vibrational and rotational quantum numbers. Special cases were considered when the potential parameters were altered, resulting into Energy Dependent Kratzer and Kratzer potential, Energy Dependent Kratzer fues and Kratzer fues potential, Energy Dependent Inverse quadratic Yukawa and Inverse quadratic Yukawa Potential, Energy Dependent Yukawa (screened Coulomb) and Yukawa (screened Coulomb) potential, and Energy Dependent Coulomb and Coulomb potential, respectively. Their energy eigenvalues expressions and numerical computations agreed with the already existing literatures.