Spinel-type CuFe2O4 nanoparticles were synthesized by a solvothermal method using ethylene glycol as solvent and polyvinylpyrrolidone (PVP) as dispersant. The characterization results showed that the average diameter of the hollow-spherical CuFe2O4 was approximately 100 nm with homogeneous morphology and negligible agglomeration. CuFe2O4 was used as the active electrode material to explore its supercapacitive properties in different concentrations of KOH electrolytes. It was found that the CuFe2O4 hollow-spherical nanoparticles exhibit potential electronic performance in supercapacitor, with a specific capacitance of 368.2 F/g and capacitance stability retention of 91.0% after 2000 cycles at the current density of 5 A/g in 3 mol/L KOH electrolyte. The present findings demonstrate that the CuFe2O4 electrode materials can have important implications with practical prospects in energy storage systems.