Neutron diffraction experiments have been performed on a magnetically ordered CeCu2Si2 single crystal exhibiting A-phase anomalies in specific heat and thermal expansion. Below T(N) approximately 0.8 K antiferromagnetic superstructure peaks have been detected. The propagation vector of the magnetic order appears to be determined by the topology of the Fermi surface of heavy quasiparticles as indicated by renormalized band-structure calculations. The observation of long-range incommensurate antiferromagnetic order as the nature of the A phase in CeCu2Si2 suggests that a spin-density-wave instability is the origin of the quantum critical point in CeCu2Si2.
We use neutron diffraction to show that superconductivity affects the magnetic order in UPt3. The different superconducting states identified in previous bulk measurements can be associated with different behaviors of the magnetic order parameter. The data suggest that the coupling between the multicomponent superconducting and magnetic order parameters leads to the variety of superconducting phases of UPt3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.