The present work reports structural and magnetic study of FeNi polycrystalline films on Si substrates. X-ray dispersive energy measurements indicated relative concentrations of 64 % iron and 36 % nickel, which means that the films present Invar concentration, a phenomenon characterized by the decrease of the thermal expansion coefficient of the alloy to very low values. Experimental studies show that this phenomenon is strongly related to the magnetic structure of the alloys, but current theoretical models still cannot fully explain the relation between magnetic and mechanical characteristics of Invar alloys, motivating continued studies on their magnetic properties.In this research, the micromagnetic configuration for three FeNi films in Invar concentration and three different thicknesses (30, 70 and 140 nm) is analyzed according to their thicknesses. Experimental techniques such as SQUID magnetometry and Magnetic Force Microscopy (MFM) were used, as well as computer simulations, to offer more experimental bases that contribute to the understanding of the phenomena present in FeNi36 Invar alloys.Results revealed magnetic inhomogeneities caused by film polycrystallinity. The samples also showed a soft ferromagnetic behavior, with increasing saturation magnetizations and effective anisotropies with increasing thicknesses. Results also showed a great influence of shape anisotropy so that the films are easily magnetized in-plane.Finally, magnetometry measurements were complemented by micromagnetic structure mapping by Magnetic Force Microscopy, the resulting magnetic images were later simulated with the software MUMAX3. The maps revealed domains with local magnetizations parallel to the surface of the films, while the walls have a Bloch-like structure, mainly inside the thicker films. In this way, the anisotropy of the material defines an easy axis of magnetization in the plane of the films, because of the shape anisotropy, which forces the domain walls to distribute in the films, forming irregular zigzag like patterns on the surface.