Plasmodium vivax is the causative infectious agent of 80–300 million annual cases of malaria. Many aspects of this parasite’s biology remain unknown. To further elucidate the interaction of P. vivax with its Saimiri boliviensis host, we obtained detailed proteomes of infected red blood cells, representing the trophozoite-enriched stage of development. Data from two of three biological replicate proteomes, emphasized here, were analyzed using five search engines, which enhanced identifications and resulted in the most comprehensive P. vivax proteomes to date, with 1375 P. vivax and 3209 S. boliviensis identified proteins. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with P. vivax’s known reticulocyte host–cell specificity. A majority of the host and pathogen proteins identified belong to specific functional categories, and several parasite gene families, while 33% of the P. vivax proteins have no reported function. Hemoglobin was significantly oxidized in both proteomes, and additional protein oxidation and nitration was detected in one of the two proteomes. Detailed analyses of these post-translational modifications are presented. The proteins identified here significantly expand the known P. vivax proteome and complexity of available host protein functionality underlying the host–parasite interactive biology, and reveal unsuspected oxidative modifications that may impact protein function.
Biological significance
Plasmodium vivax malaria is a serious neglected disease, causing an estimated 80 to 300 million cases annually in 95 countries. Infection can result in significant morbidity and possible death. P. vivax, unlike the much better-studied Plasmodium falciparum species, cannot be grown in long-term culture, has a dormant form in the liver called the hypnozoite stage, has a reticulocyte host–cell preference in the blood, and creates caveolae vesicle complexes at the surface of the infected reticulocyte membranes. Studies of stage-specific P. vivax expressed proteomes have been limited in scope and focused mainly on pathogen proteins, thus limiting understanding of the biology of this pathogen and its host interactions. Here three P. vivax proteomes are reported from biological replicates based on purified trophozoite-infected reticulocytes from different Saimiri boliviensis infections (the main non-human primate experimental model for P. vivax biology and pathogenesis). An in-depth analysis of two of the proteomes using 2D LC/MS/MS and multiple search engines identified 1375 pathogen proteins and 3209 host proteins. Numerous functional categories of both host and pathogen proteins were identified, including several known P. vivax protein family members (e.g., PHIST, eTRAMP and VIR), and 33% of protein identifications were classified as hypothetical. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with this parasite species’ known reticulocyte host–cell specificity. In two biological replicates analyzed for post-translational modif...