2018
DOI: 10.1080/10556788.2018.1479408
|View full text |Cite
|
Sign up to set email alerts
|

Splitting methods for the Eigenvalue Complementarity Problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 21 publications
0
1
0
1
Order By: Relevance
“…Como ocurre con los vectores propios convencionales, los vectores propios complementarios asociados a un valor propio complementario también forman un conjunto infinito, el cual es un cono convexo (Iusem, J údice, Sessa, y Sarabando, 2019). Esto puede verse fácilmente con las siguientes matrices, A = 18 0 0 1 y B = 9 3 3 5 .…”
Section: Introductionunclassified
“…Como ocurre con los vectores propios convencionales, los vectores propios complementarios asociados a un valor propio complementario también forman un conjunto infinito, el cual es un cono convexo (Iusem, J údice, Sessa, y Sarabando, 2019). Esto puede verse fácilmente con las siguientes matrices, A = 18 0 0 1 y B = 9 3 3 5 .…”
Section: Introductionunclassified
“…During the past several years, many theoretical results [2,3,4,5], applications [6,7,8] and extensions [9,10,11,12,13,14] of EiCP have been discussed and a number of efficient algorithms have been proposed for the solution of this problem [15,16,17,18,19,20,21,22]. Contrary to the EiCP, QEiCP may have no solution even when the matrix A of the leading λ-term is PD [23].…”
Section: Introductionmentioning
confidence: 99%