Aims: Pseudomonas fluorescens are important psychrotrophic food spoilage bacteria that are frequently detected in dairy, meat and aquatic products. Quorum sensing (QS) is an intercellular communication and gene regulation mechanism that enables bacteria to monitor their cell densities and regulate a variety of physiological processes. Hence, targeting the bacterial QS system might be a feasible approach to improve food quality and safety by regulating the spoilage caused by P. fluorescens. Methods and Results: In this study, we screened a food-derived threedimensional (3D) compound database to search for potential QS inhibitors (QSIs) with higher security. The 3D structures of LuxI-and LuxR-type proteins of P. fluorescens P07 were used as targets to screen for QSIs. A total of 25 compounds with high docking scores were tested for their anti-QS activities by indicator strains. The results show that 19 compounds possessed anti-QS activities. Among them, (+)-catechin had the strongest anti-QS activity. The results show that (+)-catechin significantly inhibited the production of extracellular enzymes, swimming motility, biofilm formation, acyl-homoserine lactones and extracellular polymeric substances (EPSs) of P. fluorescens P07. The inhibitory mechanism of (+)-catechin on the QS system of P. fluorescens P07 was discussed in the context of molecular docking analysis and real-time quantitative PCR (RT-qPCR). Conclusions: Virtual screening was useful in finding novel QSIs with high security of P. fluorescens P07 from a food-derived 3D compound database. The high hit rate suggested that foods are rich sources of QSIs, and have great potential for exploration. Significance and Impact of the Study: The modelled LuxI-and LuxR-type proteins could be used as targets to discover P. fluorescens P07 QSIs. (+)catechin, (À)-epicatechin, propyl gallate, hesperidin and lycopene which were identified as potent QSIs, and may be applied in food preservation and biofilm elimination.