Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in the x-axis, y-axis, major axis, minor axis, and relative positional errors in the x-axis and y-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.