“…Previous studies have utilized different approaches to forecast the prices of underlying assets, for instance ordinary least squares (OLS) (Aye et al 2015;Birkelund et al 2015;Botterud, Kristiansen, and Ilic 2010;Danese and Kalchschmidt 2011;Van Donselaar et al 2016;Haugom et al 2011;Junttila, Myllymäki, and Raatikainen 2018;Mosquera-López and Nursimulu 2019;Weron and Zator 2014), the error correction model and cointegration (Eksoz, Mansouri, and Bourlakis 2014;Fantazzini and (Bunn and Chen 2013;Girish, Rath, and Akram 2018;Junttila et al 2018;Nakajima and Hamori 2013;Park, Mjelde, and Bessler 2006), the autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroscedasticity (GARCH) type (Bowden and Payne 2008;Charwand, Gitizadeh, and Siano 2017;Ferbar Tratar 2015;Furió and Chuliá 2012;Loi and Jindal 2019;Rostami-Tabar et al 2015;Tratar, Mojškerc, and Toman 2016), machine learning approaches (Lolli et al 2017;Nikolopoulos, Babai, and Bozos 2016;Tang and Rehme 2017;Y. Zhu et al 2019), optimization and networks (Hasni et al 2019;Le, Ilea, and Bovo 2019;Mirza and Bergland 2012;Tande 2003;Zhu, Mukhopadhyay, and Yue 2011), quantile smoothing (Bruzda 2019), and generalized additive models (Serinaldi 2011).…”