The mutual interactions of two copropagating laser beams at a relative phase are studied using a two-dimensional fluid code. The interactions are investigated in underdense plasma at selected beam configurations and beam parameters for two separate nonlinearities, i.e., the ponderomotive and the relativistic nonlinearity. The selected beam configurations are introduced by different initial transverse spot size perturbations ͑finite and infinite͒ and different initial transversal intensity distributions ͑nonuniform and uniform͒ over those spot sizes and the selected beam parameters are given by different initial beam intensities relevant to each nonlinearity. In the ponderomotive nonlinearity, simulation results show that no mutual interactions are demonstrated between the copropagating beams regardless of the initial beam configurations and parameters. In nonlinear relativistic simulations, the mutual interactions between the beams are clearly observed, a mutual repulsion is formed in the presence of initial intensities that are nonuniformly distributed over finite spot sizes, and an effective strongly modulated mutual attraction takes places in the presence of initial intensities that are uniformly distributed over infinite spot sizes. Moreover, it is found in these simulations that increasing the initial beam intensities improves the attraction properties between the copropagationg beams.