Low-voltage, solution-processed oxide thin-film transistors (TFTs) have shown great potential in next-generation low-power, printable electronics. However, it is now still quite challenging to obtain low-voltage oxide TFTs with both high mobility and stability, especially for solution-processed ones. In this work, La-doped InZnO (IZO:La) channel for high performance and stable TFTs is developed using a simple solution process. The effects of La composition in IZO:La on the film and TFT performance are systematically investigated. It is confirmed that the incorporation of appropriate La could control the carrier concentration, improve the surface morphology, and passivate the oxygen-related defects, leading to a reduced trap density both at dielectric/channel interface and within the channel layer. As a result, the optimized TFTs with 1% La dopants exhibit the best overall performance, including a low operating voltage of 1 V, a high mobility of 14.5 cm2/V s, a low subthreshold swing of 109 mV/dec, a turn-on voltage close to 0 V, and negligible changes of performance under both positive and negative bias stresses. This work might support the development of all-solution-processed oxide TFT backplanes for battery-powered active-matrix displays.