The authors describe an electrochemical method for the determination of the anti-cancer drug nilutamide. The method is based on the use of a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide (β-CD-AuNP/GO). An alkaline solution of glucose was used as a reducing agent to reduce the gold ions, rather than citric acid and a harmful reducing agent such as hydrazine and sodium borohydride. The structure and surface morphology of the β-CD-AuNP/GO composite was characterized by Raman spectroscopy, transmission electron microscopy and energydispersive X-ray spectroscopy. A screen printed carbon electrode was modified with the nanocomposite, and the resulting electrode used as a disposable sensor for the determination of nilutamide by differential pulse voltammetry. Best operated at a working voltage of 0.43 V (vs Ag/AgCl), it exhibits excellent electrocatalytic activity and a detection limit as low as 0.4 nM. The sensor was applied to the determination of nilutamide in (spiked) human serum, as well as in a tablet, where it displays good recovery and accuracy. The sensor is repeatable, reproducible, stable and selective even in the presence of other aromatic nitro compounds.