Photovoltaic (PV) and thermoradiative (TR) devices are power generators that use the radiative energy transfer between a hot and a cold reservoir. For PV devices, the semiconductor at the cold side (PV cell) generates electric power; for TR devices, the semiconductor at the hot side (TR cell) generates electric power. In this work, we compare the performance of the photovoltaic and thermoradiative devices, with and without the non-radiative processes. Without non-radiative processes, PV devices generally produce larger output powers than TR devices. However, when non-radiative processes become important, the TR can outperform the PV devices. This conclusion applies to both far-field and near-field based devices. A key difference in efficiency between PV and TR devices is pointed out.
Journal of Applied PhysicsThis work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.Photovoltaic (PV) and thermoradiative (TR) devices are power generators that use the radiative energy transfer between a hot and a cold reservoir. For PV devices, the semiconductor at the cold side (PV cell) generates electric power; for TR devices, the semiconductor at the hot side (TR cell) generates electric power. In this work, we compare the performance of the photovoltaic and thermoradiative devices, with and without the non-radiative processes. Without non-radiative processes, PV devices generally produce larger output powers than TR devices. However, when non-radiative processes become important, the TR can outperform the PV devices. This conclusion applies to both far-field and near-field based devices. A key difference in efficiency between PV and TR devices is pointed out.