Multiple patterning lithography has been widely adopted for today's circuit manufacturing. However, increasing the number of masks will make the manufacturing process more expensive. More importantly, towards 7 nm technology node, the accumulated overlay in multiple patterning will cause unacceptable edge placement error (EPE). Recently, directed self-assembly (DSA) has been shown to be an effective lithography technology that can pattern contact/via/cuts with high throughput and low cost. DSA is currently aiming at 7 nm technology, where the guiding template generation needs either double patterning EUV or multiple patterning DUV process. By incorporating DSA into the multiple patterning process, it is possible to reduce the number of masks and achieve a cost effective solution. In this paper, we study the decomposition problem for contact layer in rowbased standard cell layout with DSA-MP complementary lithography. We explore several heuristic-based approaches, and propose an algorithm that decomposes a standard cell row optimally in polynomial-time. Our experiments show that our algorithm guarantees to find a minimum cost solution if one exists, while the heuristic cannot or only finds a sub-optimal solution. Our results show that the DSA-MP complementary approach is very promising for the future advanced nodes.