This review aims to explore the potential of artificial intelligence (AI) in coronary CT angiography (CCTA), a key tool for diagnosing coronary artery disease (CAD). Because CAD is still a major cause of death worldwide, effective and accurate diagnostic methods are required to identify and manage the condition. CCTA certainly is a noninvasive alternative for diagnosing CAD, but it requires a large amount of data as input. We intend to discuss the idea of incorporating AI into CCTA, which enhances its diagnostic accuracy and operational efficiency. Using such AI technologies as machine learning (ML) and deep learning (DL) tools, CCTA images are automated to perfection and the analysis is significantly refined. It enables the characterization of a plaque, assesses the severity of the stenosis, and makes more accurate risk stratifications than traditional methods, with pinpoint accuracy.Automating routine tasks through AI-driven CCTA will reduce the radiologists' workload considerably, which is a standard benefit of such technologies. More importantly, it would enable radiologists to allocate more time and expertise to complex cases, thereby improving overall patient care. However, the field of AI in CCTA is not without its challenges, which include data protection, algorithm transparency, as well as criteria for standardization encoding. Despite such obstacles, it appears that the integration of AI technology into CCTA in the future holds great promise for keeping CAD itself in check, thereby aiding the fight against this disease and begetting better clinical outcomes and more optimized modes of healthcare. Future research on AI algorithms for CCTA, making ethical use of AI, and thereby overcoming the technical and clinical barriers to widespread adoption of this new tool, will hopefully pave the way for profound AI-driven transformations in healthcare.