Archaeological wood can be preserved in waterlogged conditions. Due to their degradation in the ground, these archaeological remains are endangered after their discovery, since they decay irretrievably during drying. Conservation measures are used to preserve waterlogged archaeological objects, maintaining their shape and character as much as possible. However, different methods have been developed leading to varying results. This study compares their effectiveness in order to clarify their mode of action. The methods including alcohol-ether resin, lactitol/trehalose, melamine formaldehyde, polyethylene glycol impregnation prior to freeze–drying, saccharose and silicone oil were assessed by analysing mass changes and volume stability using structured-light 3D scanning. The state of the conserved wood samples including the spatial distribution of the conservation agent was examined using synchrotron micro-computed tomography. Raman spectroscopy was used to observe the agent´s spatial distribution within the cells. The findings demonstrated that melamine formaldehyde stabilises the degraded cell walls. The lumens are void, as in the case with alcohol-ether resin, while polyethylene glycol, silicone oil, saccharose and lactitol/trehalose also occupy the lumens. It is assumed that the drying method has an effect on the distribution of the solidifying agent. The knowledge gained affords insights into the mechanism of conservation methods, which in turn accounts for the varied outcomes. It also allows conclusions to be drawn about the condition and stability of conserved museum objects and serves as a starting point for the further development of conservation methods.