Cultural heritage objects made of wood can be preserved under waterlogged conditions for many years, where decay is slowed down and the wood structure is more or less completely filled with water. Depending on the degree of degradation, finds may collapse and shrink when they are allowed to dry in an uncontrolled manner after excavation, leading to total loss of the object and its information. Conservation measures are taken to prevent damage of objects and dimensional stability is an important criterion. In this study, structured-light 3D scanning and micro-computed tomography were used to analyse the dimensional stability of wood after conservation, as well as its long-term stability. 83 samples from a reference collection established between 2008 and 2011 allowed this comparative study of the most common conservation methods at that time. The effects of conservation methods using alcohol-ether resin, melamine-formaldehyde (Kauramin 800®), lactitol/trehalose, saccharose, and silicone oil on dimensional stability were investigated. In addition, different polyethylene glycol (PEG) treatments with subsequent freeze-drying were also investigated: one-stage with PEG 2000, two-stage with PEG 400 and PEG 4000 and three-stage with PEG 400, PEG 1500 and PEG 4000. The data received from analyses of both volume and surface gave detailed information about the success of each conservation method. Attempts were made to quantify the damage patterns, specifically shrinkage, collapse, and cracks. While PEG and freeze-drying, alcohol-ether-resin, as well as the Kauramin 800® method gave the best results, analysis also highlighted the failures of each method.
Impressive wooden objects from past cultures can last for centuries or millennia in waterlogged soil. The aim of conservation is to bring the more or less degraded waterlogged archaeological wooden (WAW) finds to a stable state without altering the wood structure through shrinkage, collapse, and deformation. In this study, the most used methods in the conservation practice, such as the alcohol-ether resin method, conservation with the melamine formaldehyde resin Kauramin 800, a mixture of lactitol and trehalose, saccharose, silicone oil, and three different conservation methods with polyethylene glycol followed by freeze-drying were tested. The effects of the conservation agents on the structure of archaeological pine were investigated using optical light microscopy (reflected light microscopy, RLM), scanning electron microscopy (SEM), and X-ray computed tomography (XCT). Through the examinations, most conservation agents could be identified in the structure and their impact on conservation could be analyzed. In particular, it was possible to trace the incorporation of the conservation agents in the lumen, which was influenced by factors, such as wood anatomy, degree of degradation, and drying process. Differences in the mode of action of the conservation processes could also be identified in the composition of the cell wall tracheids.
The removal of water from archaeological wooden objects for display or storage is of great importance to their long-term conservation. Any mechanical instability caused during drying can induce warping or cracking of the wood cells, leading to irreparable damage of the object. Drying of an object is commonly carried out in one of three ways: (i) air-drying with controlled temperature and relative humidity, (ii) drying-out of a non-aqueous solvent or (iii) freeze-drying. Recently, there has been great interest in the replacement of the standard, but limited, polyethylene glycol with biopolymers for wood conservation; however, their behaviour and action within the wood is not completely understood. Three polysaccharides—low-molar-mass (Mw) chitosan (Mw ca. 60,000 g/mol), medium-molar-mass alginate (Mw ca. 100,000 g/mol) and cellulose nanocrystals (CNCs)-are investigated in relation to their drying behaviour. The method of drying reveals a significant difference in the morphology of these biopolymers both ex situ and within the wood cells. Here, the effect these differences in structuration have on the coating of the wood cells and the biological and thermal stability of the wood are examined, as well as the role of the environment in the formation of specific structures. The role these factors play in the selection of appropriate consolidants and drying methods for the conservation of waterlogged archaeological wooden objects is also investigated. The results show that both alginate and chitosan are promising wood consolidants from a structural perspective and both improve the thermal stability of the lignin component of archaeological wood. However, further modification would be necessary to improve the biocidal activity of alginate before it could be introduced into wooden objects. CNCs did not prove to be sufficiently suitable for wood conservation as a result of the analyses performed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.