A system of nonlinear differential equations is proposed to assess the effects of prevalencedependent disease contact rate, pathogen's shedding rates, and treatment rate on the dynamics of schistosomiasis in a general setting. The decomposition techniques by Vidyasagar and the theory of monotone systems are the main ingredients to deal completely with the global asymptotic analysis of the system. Precisely, a threshold quantity for the analysis is derived and the existence of a unique endemic equilibrium is shown. Irrespective of the initial conditions, we prove that the solutions converge either to the disease-free equilibrium or to the endemic equilibrium, depending on whether the derived threshold quantity is less or greater than one. We assess the role of an integrated control strategy driven by human behavior changes through the incorporation of prevalence-dependent increasing the prophylactic treatment and decreasing the contact rate functions, as well as the mechanical water sanitation and the biological elimination of snails. Because schistosomiasis is endemic, the aim is to mitigate the endemic level of the disease. In this regard, we show both theoretically and numerically that: the reduction of contact rate through avoidance of contaminated water, the enhancement of prophylactic treatment, the water sanitation, and the removal of snails can reduce the endemic level and, to an ideal extent, drive schistosomiasis to elimination.