The interaction between a spherical particle in a pore near a constriction and the wall is calculated in order to understand the behavior of dispersions on their transport through a porous medium. A simplified geometry of the pore is assumed which permits, for a spherical particle: The method permits solution of the Navier-Stokes equation, in the low Reynolds number range (e.g., Re = 5 × 10-4), as long as the closest distance between the particle and the wall is at least 0.3 urn. The results indicate that under the conditions covered by the present calculations, for a stationary particle near a pore constriction, the hydrodynamic interactions by far predominate over colloid chemical interactions.