The heterogeneous group of oral bacteria within the sanguinis (sanguis) streptococci comprise members of the indigenous biota of the human oral cavity. While the association of Streptococcus sanguinis with bacterial endocarditis is well described in the literature, S. sanguinis is thought to play a benign, if not a beneficial, role in the oral cavity. Little is known, however, about the natural history of S. sanguinis and its specific relationship with other oral bacteria. As part of a longitudinal study concerning the transmission and acquisition of oral bacteria within mother-infant pairs, we examined the initial acquisition of S. sanguinis and described its colonization relative to tooth emergence and its proportions in plaque and saliva as a function of other biological events, including subsequent colonization with mutans streptococci. A second cohort of infants was recruited to define the taxonomic affiliation of S. sanguinis. We found that the colonization of the S. sanguinis occurs during a discrete "window of infectivity" at a median age of 9 months in the infants. Its colonization is tooth dependent and correlated to the time of tooth emergence; its proportions in saliva increase as new teeth emerge. In addition, early colonization of S. sanguinis and its elevated levels in the oral cavity were correlated to a significant delay in the colonization of mutans streptococci. Underpinning this apparent antagonism between S. sanguinis and mutans streptococci is the observation that after mutans streptococci colonize the infant, the levels of S. sanguinis decrease. Children who do not harbor detectable levels of mutans streptococci have significantly higher levels of S. sanguinis in their saliva than do children colonized with mutans streptococci. Collectively, these findings suggest that the colonization of S. sanguinis may influence the subsequent colonization of mutans streptococci, and this in turn may suggest several ecological approaches toward controlling dental caries.The heterogeneous group of oral streptococci comprising the sanguinis streptococci are members of the human indigenous biota. (The previously recognized species of the genus Streptococcus named "sanguis" has recently been changed to "sanguinis" so as to conform to the rules of Latin grammar [32]). S. sanguinis is recognized not only for its historical association with life-threatening bacterial endocarditis, but also because of its putative antagonistic role in dental caries (20) and periodontal diseases (27). In terms of the former, S. sanguinis may compete with the mutans streptococci for colonization sites on tooth surfaces, since both groups of bacteria require the presence of teeth for colonization (6, 7) and may exhibit direct biochemical antagonism in situ (33). Because the cariogenic potential of S. sanguinis is deemed low compared to that of the mutans streptococci, several investigators have suggested that the S. mutans/S. sanguinis ratio may serve as an indicator for caries risk, i.e., the smaller the ratio, the lesser the ris...