This paper is concerned with the large time behavior of solutions of the Cauchy problem to the one‐dimensional compressible fluid models of Korteweg type, which governs the motions of the compressible fluids with internal capillarity. When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave, it is shown that the viscous contact wave corresponding to the contact discontinuity is asymptotically stable provided that the strength of contact discontinuity and the initial perturbation are suitably small. The analysis is based on the elementary L2‐energy method together with continuation argument. Copyright © 2013 John Wiley & Sons, Ltd.