In some surveillance missions in the aftermath of disasters, the use of a teleoperated tracked vehicle contributes to the safety of rescue crews. However, because of its insufficient traversal capability, the vehicle can become trapped upon encountering rough terrain. This may lead to mission failure and, in the worst case, loss of the vehicle. To improve the success rate of such missions, it is very important to assess the traversability of a tracked vehicle on rough terrains based on objective indicators. From this viewpoint, we first derived physical conditions that must be satisfied in the case of traversal on stairs, based on a simple mechanical model of a tracked vehicle. We then proposed a traversability assessment method for tracked vehicles on stairs. In other words, we established a method to evaluate whether or not a tracked vehicle can traverse the target stairs. To validate the method, we conducted experiments with an actual tracked vehicle on our simulated stairs, and we observed some divergences between our calculation and the experimental result. Therefore, we analyzed possible factors causing these divergences, estimated the influence of the factors quantitatively by conducting additional experiments, and identified the reasons for the deviation. In this paper, we report the above-described assessment method, the experiments, and the analyses.