In this paper, we explore the asymptotic behavior of solutions in a thermoplastic Rao–Nakra (sandwich beam) beam equation featuring nonlinear damping with a variable exponent. The heat conduction in this context adheres to Coleman–Gurtin’s thermal law, encompassing linear damping, Fourier, and Gurtin–Pipkin’s laws as specific instances. By employing the multiplier approach, we establish general energy decay results, with exponential decay as a particular manifestation. These findings extend and generalize previous decay results concerning the Rao–Nakra sandwich beam equations.