The β phase spinodal decomposition during continuous cooling in Ti‒Nb‒O alloys is investigated by the phase-field method. Addition of only a few at.%O to Ti‒23Nb (at.%) alloy remarkably increases the driving force of the β phase spinodal decomposition. During isothermal heat treatment at 1000 K and 1100 K in Ti‒23Nb‒3O (at.%) alloy, the β phase separates into β1 phase denoted as (Ti)1(O, Va)3 and β2 phase denoted as (Ti, Nb)1(Va)3, resulting in the formation of nanoscale concentration modulation. The phase decomposition progresses in 0.3‒20 ms. In Ti‒23Nb‒XO alloys (X = 1.0, 1.2, 2.0), the spinodal decomposition occurs during continuous cooling with the rate of 500 K s‒1, indicating that the spinodal decomposition occurs during water quenching in the alloys. It is assumed that there is a threshold value of oxygen composition for inducing the spinodal decomposition because it does not occur during continuous cooling in Ti‒23Nb‒0.6O (at.%) alloy. The concentration modulation introduced by the β phase decomposition has significant effect on the β→α” martensitic transformation. Hence, it seems that for controlling microstructure and mechanical properties of Ti‒Nb‒O alloys, careful control of heat treatment temperature and cooling rate condition is required.