A novel Ferrier-type carbocyclization is reported. It involves a carbohydrate-derived lactone acetal synthesized from methyl α-d-glucopyranoside, which upon treatment with excess vinylmagnesium bromide provides a highly substituted carbocyclic product as a single stereoisomer. The yield is greatly increased when N,N,N',N'-tetramethylethylenediamine is added to the reaction mixture. Optimized reaction conditions have been applied to lactone acetals derived from other carbohydrates. Based on the obtained results, a possible reaction mechanism has been proposed. Furthermore, scalability of the reaction up to 15 g scale and derivatization of the carbocyclic product has been demonstrated, including the formation of a rare trans-bicyclo[4.3.0]nonene scaffold via a ring-closing metathesis. The structure of this and all carbocyclic products were confirmed by X-ray crystallographic analysis.