This paper presents research related to the estimation of the precipitation fraction in the soil water of a sloped vineyard at the SUPREHILL Critical Zone Observatory (CZO) in Zagreb, Croatia. Numerous investigations have shown that exploration of hillslope soils can be very challenging due to the existence of heterogeneity and different soil properties, as well as due to anthropogenically induced processes, which can affect precipitation infiltration and soil water flow. Within this research, physicochemical soil properties, soil water content (SWC), and isotopic composition of soil water and precipitation (δ2H and δ18O) have been examined. The isotopic signature of soil water was monitored in 24 points, at 4 depths, throughout the hillslope vineyard. Soil water isotopic composition from all monitoring points coincided with the Local Meteoric Water Line (LMWL), with almost no variability at 100 cm depth, which was consistent with the smallest variation of SWC at 80 cm depth and indicated that most of water mixing takes place in the shallower part of the hillslope. Results suggested the existence of heterogeneity, uneven erosion processes in the footslope of the observed vineyard, and different infiltration patterns. Fractions of precipitation varied significantly depending on the depth and position in the vineyard, from approximately 1% up to 98%, where more precipitation fraction has been determined in the surface and subsurface runoff. Additionally, statistical analysis and a more detailed evaluation of precipitation fractions at the 40 cm depth, where wick lysimeters are installed, have shown that Corg content is related to the silt fraction, while the first results indicate that the infiltration patterns were dependent on the common influence of all observed physicochemical properties.