Nanotechnology has played an important role in drug delivery and biomedical imaging over the past two decades. In particular, nanoscale metal-organic frameworks (nMOFs) are emerging as an important class of biomedically relevant nanomaterials due to their high porosity, multifunctionality, and biocompatibility. The high porosity of nMOFs allows for the encapsulation of exceptionally high payloads of therapeutic and/or imaging cargoes while the building blocks-both ligands and the secondary building units (SBUs)-can be utilized to load drugs and/or imaging agents via covalent attachment. The ligands and SBUs of nMOFs can also be functionalized for surface passivation or active targeting at overexpressed biomarkers. The metal ions or metal clusters on nMOFs also render them viable candidates as contrast agents for magnetic resonance imaging, computed tomography, or other imaging modalities. This review article summarizes recent progress on nMOF designs and their exploration in biomedical areas. First, the therapeutic applications of nMOFs, based on four distinct drug loading strategies, are discussed, followed by a summary of nMOF designs for imaging and biosensing. The review is concluded by exploring the fundamental challenges facing nMOF-based therapeutic, imaging, and biosensing agents. This review hopefully can stimulate interdisciplinary research at the intersection of MOFs and biomedicine.