Low-grade serous ovarian cancer was previously thought to be a subtype of high-grade serous ovarian cancer, but it is now recognized as a distinct disease with unique clinical and molecular behaviors. The disease may arise de novo or develop from a serous borderline ovarian tumor. Although it is more indolent than high-grade serous ovarian cancer, most patients have advanced metastatic disease at diagnosis and recurrence is common. Recurrent low-grade serous ovarian cancer is often resistant to standard platinum–taxane chemotherapy, making it difficult to treat with the options currently available. New targeted therapies are needed, but their development is contingent on a deeper understanding of the specific biology of the disease. The known molecular drivers of low-grade tumors are strong hormone receptor expression, mutations in the mitogen-activated protein kinase (MAPK) pathway (KRAS,BRAF, andNRAS), and in genes related to the MAPK pathway (NF1/2,EIF1AX,andERBB2). However, MAPK inhibitors have shown only modest clinical responses. Based on the discovery ofCDKN2Amutations in low-grade serous ovarian cancer, cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors are now being tested in clinical trials in combination with hormone therapy. Additional mutations seen in a smaller population of low-grade tumors includeUSP9X,ARID1A,andPIK3CA,but no specific therapies targeting them have been tested clinically. This review summarizes the clinical, pathologic, and molecular features of low-grade serous ovarian cancer as they are now understood and introduces potential therapeutic targets and new avenues for research.