2015
DOI: 10.1155/2015/367879
|View full text |Cite
|
Sign up to set email alerts
|

Stamps Detection and Classification Using Simple Features Ensemble

Abstract: The paper addresses a problem of detection and classification of rubber stamp instances in scanned documents. A variety of methods from the field of image processing, pattern recognition, and some heuristic are utilized. Presented method works on typical stamps of different colors and shapes. For color images, color space transformation is applied in order to find potential color stamps. Monochrome stamps are detected through shape specific algorithms. Following feature extraction stage, identified candidates … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0
1

Year Published

2015
2015
2020
2020

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 14 publications
(11 citation statements)
references
References 30 publications
0
10
0
1
Order By: Relevance
“…It applies Hough line and circle transforms, color segmentation and heuristic techniques. As it was stated in above-mentioned literature survey, logo detection is a very similar problem and can be solved with a little tweak to our previously presented solution [5]. Other authors propose to use key-point analyzing algorithms like ScaleInvariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF) and Features from Accelerated Segment Test (FAST) or Angular Radial Transform (ART).…”
Section: Individual Approachmentioning
confidence: 99%
See 3 more Smart Citations
“…It applies Hough line and circle transforms, color segmentation and heuristic techniques. As it was stated in above-mentioned literature survey, logo detection is a very similar problem and can be solved with a little tweak to our previously presented solution [5]. Other authors propose to use key-point analyzing algorithms like ScaleInvariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF) and Features from Accelerated Segment Test (FAST) or Angular Radial Transform (ART).…”
Section: Individual Approachmentioning
confidence: 99%
“…It is based on classification of characteristic features, often in a scheme "one versus all". In our previous works [5,9] a similar problem of stamp detection and recognition was described in detail. It applies Hough line and circle transforms, color segmentation and heuristic techniques.…”
Section: Individual Approachmentioning
confidence: 99%
See 2 more Smart Citations
“…Наступний підхід до виявлення печаток у документах, представлений у [2], використовує поєднання деяких простих характеристик зображення. Алгоритми машинного навчання (такі як метод kнайближчих сусідів, метод опорних векторів, випадкові ліси), що використовуються для виявлення печаток, обробляють інформацію про зображення, в якому закодували початкову модель RGB у модель, що представляє зображення як поєднання Y, Cb, Cr, де кожна з компонент є сумою значень RGB, перемножених на сталі коефіцієнти, після чого зображення бінаризується.…”
Section: огляд літературиunclassified