Current situation with official documentary in the world, and especially in Ukraine, requires tools for electronical processing. One of the main tasks at this field is seal (or stamp) detection, which leads to documents classification based on mentioned criterion. Current article analyzes some of existed methods to resolve the problem, describes a new approach to classify documentary and reflects dependence of model accuracy to input data amount. As a result of this work is a convolutional neural network that classify 708 out of 804 images of official documents correctly. A corresponded percentage of model accuracy is 88.03, despite the fact of bias presence in input data.
використаННя МашиННого НавчаННя у заДачах класифікації звуків У роботі розглянуто особливості використання методів машинного навчання (МН) для класифікації звукової інформації на прикладі розв'язку задачі класифікації міських звуків (МЗ). Дослідження з аналізу міських акустичних середовищ є досить обмеженими. Більше того, у цих дослідженнях основна увага фокусується на класифікації місць, які характеризують певні звуки, наприклад, парку, вулиці, на відміну від ідентифікації джерел звуку в них, таких як автомобільний сигнал, постріл тощо. Тому класифікація МЗ-досить актуальна проблема, що потребує вирішення. Метою роботи є висвітлення побудови оптимальних моделей МН для задачі коректної класифікації МЗ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.