The purpose was to observe whether Valproic acid (VPA) has a positive effect on bone defect repair via activating Notch signaling pathway in an OVX rat model. The MC3T3-E1 cells were co-cultured with VPA and induced to osteogenesis, and the osteogenic activity was observed by Alkaline phosphatase (ALP) staining, Alizarin Red(RES) staining and Western blotting(WB). Then the hydrogel containing VPA was implanted into the femoral epiphysis bone defect model of ovariectomized(OVX) rats for 12 weeks. Micro-CT, Biomechanical testing, histology, Immunofluorescence, RT-qPCR, WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and WB results show that the cell mineralization, osteogenic activity and protein expression of ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, JAG1 of VPA group is significantly higher than the Control group. Micro-CT, Biomechanical testing, histology, Immunofluorescence and RT-qPCR evaluation show that, group VPA presented the stronger effect on bone strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling pathway and acceleration blood vessel and bone formation.