Parathyroid hormone (1-34, PTH) combined β-tricalcium phosphate (β-TCP) achieves stable bone regeneration without cell transplantation in previous studies. Recently, with the development of tissue engineering slow release technology, PTH used locally to promote bone defect healing become possible. This study by virtue of collagen with a combination of drugs and has a slow release properties, and investigated bone regeneration by β-TCP/collagen (β-TCP/COL) with the single local administration of PTH. After the creation of a rodent critical-sized femoral metaphyseal bone defect, β-TCP/COL was prepared by mixing sieved granules of β-TCP and atelocollagen for medical use, then β-TCP/COL with dripped PTH solution (1.0 µg) was implanted into the defect of OVX rats until death at 4 and 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, and biomechanics. The results of our study show that single-dose local administration of PTH combined local usage of β-TCP/COL can increase the healing of defects in OVX rats. Furthermore, treatments with single-dose local administration of PTH and β-TCP/COL showed a stronger effect on accelerating the local bone formation than β-TCP/COL used alone. The results from our study demonstrate that combination of single-dose local administration of PTH and β-TCP/COL had an additive effect on local bone formation in osteoporosis rats.
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Strontium (Sr) promotes osteoblast proliferation and inhibits osteoclast proliferation and positively affects bone regeneration. The aim of this study was to confirm the effects of strontium-substituted hydroxyapatite (Sr-HA) coating via electrochemical deposition on implant's osseointegration in the osteoporotic condition. Female Sprague Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group 5 % Sr-HA; group 10 % Sr-HA; and group 20 % Sr-HA. Afterward, all rats from groups HA, 5 % Sr-HA, 10 % Sr-HA, and 20 % Sr-HA received implants with hydroxyapatite coating containing 0, 5, 10, and 20 % Sr. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group 20 % Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, these are significant differences in bone formation and push-out force was observed between groups 5 % Sr-HA and 10 % Sr-HA. This finding suggests that Sr-HA coating can improve implant osseointegration, and the 20 % Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.