Abstract. Carnosol, an active constituent of rosemary, has been reported to possess anti-inflammatory and anticancer activities. However, the molecular mechanisms underlying the anticancer effects of carnosol remain poorly understood. In the present study, we found that carnosol significantly reduced the viability of human colon cancer (HCT116) cells in a concentration-and time-dependent manner. Treatment of cells with carnosol induced apoptosis, which was associated with activation of caspase-9 and -3 and the cleavage of poly-(ADP-ribose) polymerase (PARP). Incubation with carnosol elevated the expression of Bax and inhibited the levels of Bcl-2 and Bcl-xl. Carnosol induced expression of p53 and inhibited that of murine-double minute-2 (Mdm2). Moreover, carnosol generated reactive oxygen species (ROS), and pretreatment with N-acetyl cysteine abrogated carnosol-induced cleavage of caspase-3 and PARP. The constitutive phosphorylation, the DNA binding and reporter gene activity of signal transducer and activator of transcription-3 (STAT3) was diminished by treatment with carnosol. To further elucidate the molecular mechanisms of STAT3 inactivation, we found that carnosol attenuated the phosphorylation of Janus-activated kinase-2 (Jak2) and Src kinase. Pharmacological inhibition of Jak2 and Src inhibited STAT3 phosphorylation. Furthermore, carnosol attenuated the expression of STAT3 target gene products, such as survivin, cyclin-D1, -D2, and -D3. Taken together, our study provides the first report that carnosol induced apoptosis in HCT116 cells via generation of ROS, induction of p53, activation of caspases and inhibition of STAT3 signaling pathway.
IntroductionDespite a declining trend worldwide, colorectal cancer still remains as the third most common cancer among men and the second in women (1,2). More than one million new cases of colorectal cancer are diagnosed every year (3). A wide variety of natural compounds derived from edible plants have been shown to prevent colon carcinogenesis (4). Carnosol, a diterpene present in rosemary (Rosmarinus officinalis), has been reported to prevent the development of intestinal tumors in APC (adenomatous polyposis coli) min+/+ mice (5) and to induce apoptosis in human colon cancer (COLO 205) cells (6). However, the molecular mechanisms underlying the chemopreventive and/or chemotherapeutic effects of carnosol in colon cancer are yet to be fully elucidated. We, therefore, attempted to investigate the effects of carnosol on human colon cancer (HCT116) cells and to elucidate its underlying mechanisms.One of the hallmarks of cancer is the evasion of tumor cells from apoptosis (7). Numerous naturally occurring polyphenols inhibit proliferation and induce apoptosis in various cancer cells (8). Apoptosis is induced by two cellular mechanisms: intrinsic (mitochondria-dependent) and extrinsic (death receptor-mediated) signaling (9). The intrinsic pathway of apoptosis involves the depolarization of mitochondrial membrane, release of cytochrome c, sequential activation of caspase-9, ...