No abstract
STAT3 is constitutively activated in colon cancer but its contributions in cancer-initiating cells have not been explored. In this study, we characterized STAT3 in aldehyde dehydrogenase (ALDH)-positive (ALDH+) and CD133-positive (CD133+) subpopulations of human colon tumor cells that exhibited more potent tumorinitiating ability than ALDH−/CD133− cells in tumor xenograft assays in mice. We found that ALDH+/CD133+ cells expressed higher levels of the active phosphorylated form of STAT3 than either ALDH−/CD133− or unfractionated colon cancer cells. STAT3 inhibition by RNA interference–mediated knockdown or small-molecule inhibitors LLL12 or Stattic blocked downstream target gene expression, cell viability, and tumor-sphere-forming capacity in cancer-initiating cells. Similarly, treatment of mouse tumor xenografts with STAT3 short hairpin RNA (shRNA), interleukin 6 shRNA, or LLL12 inhibited tumor growth. Our results establish that STAT3 is constitutively activated in colon cancer–initiating cells and that these cells are sensitive to STAT3 inhibition. These findings establish a powerful rationale to develop STAT3 inhibitory strategies for treating advanced colorectal cancers.
BackgroundMetastasis is a major cause of death in human colorectal cancer patients. However, the contribution of chemokines in the tumor microenvironment to tumor metastasis is not fully understood.MethodsHerein, we examinined several chemokines in colorectal cancer patients using chemokine ELISA array. Immunohistochemistry was used to detect expression of CXCL5 in colorectal cancer patients tissues. Human HCT116 and SW480 cell lines stably transfected with CXCL5, shCXCL5 and shCXCR2 lentivirus plasmids were used in our in vitro study. Immunoblot, immunofluorescence and transwell assay were used to examine the molecular biology and morphological changes in these cells. In addition, we used nude mice to detect the influence of CXCL5 on tumor metastasis in vivo.ResultsWe found that CXCL5 was overexpressed in tumor tissues and associated with advanced tumor stage as well as poor prognosis in colorectal cancer patients. We also demonstrated that CXCL5 was primarily expressed in the tumor cell cytoplasm and cell membranes, which may indicate that the CXCL5 was predominantly produced by cancer epithelial cells instead of fibroblasts in the tumor mesenchyme. Additionally, overexpression of CXCL5 enhanced the migration and invasion of colorectal cancer cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK/Elk-1/Snail pathway and the AKT/GSK3β/β-catenin pathway in a CXCR2-dependent manner. The silencing of Snail and β-catenin attenuated CXCL5/CXCR2-enhanced cell migration and invasion in vitro. The elevated expression of CXCL5 can also potentiate the metastasis of colorectal cancer cells to the liver in vivo in nude mice intrasplenic injection model.ConclusionIn conclusion, our findings support CXCL5 as a promoter of colorectal cancer metastasis and a predictor of poor clinical outcomes in colorectal cancer patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0629-4) contains supplementary material, which is available to authorized users.
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.